Abstract

As the medaka is a popular fish model in genetics, developmental biology and toxicology, the development of an efficient transgenic medaka technique is important for a variety of biological experiments. Here we demonstrated that the maize transposon system, Ac/Ds, greatly improved the transgenesis of microinjected DNA. Using the Ac/Ds system, two types of stable transgenic medaka lines, Tg(hsp70:gfp) and Tg(cyp1a1:gfp), were established with germline transmission rates of 83.3% (10/12) and 100.0% (4/4) from GFP-expressing founders, respectively. The percentages of transgenic progeny ranged between 3.1% and 100.0% in F1 from different transgenic founders. Interestingly, multiple insertions were found from transgenic founders and the cloned insertion sites confirmed the transposition mediated by Ac transposase. In addition, we demonstrated the inducible GFP expression in both GFP transgenic medaka lines. In Tg(hsp70:gfp) whose gfp gene was under the control of a heat shock inducible medaka hsp70 promoter, GFP expression was induced ubiquitously after heat shock. In Tg(cyp1a1:gfp), the gfp gene was driven by medaka cyp1a1 promoter that could be activated by various xenobiotic chemicals including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD); indeed, GFP expression was found to be induced in the liver, intestine and kidney by TCDD. Our data presented here demonstrated the highly efficient transgenesis with the aid of the maize Ac/Ds transposon system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.