Abstract

The maitotoxin (MTX)-induced cell death cascade in bovine aortic endothelial cells (BAECs), a model for Ca(2+) overload-induced toxicity, reflects three sequential changes in plasmalemmal permeability. MTX initially activates Ca(2+)-permeable, nonselective cation channels (CaNSC) and causes a massive increase in cytosolic free Ca(2+) concentration ([Ca(2+)](i)). This is followed by the opening of large endogenous cytolytic/oncotic pores (COP) that allow molecules <800 Da to enter the cell. The cells then lyse not by rupture of the plasmalemma but through the activation of a "death" channel that lets large proteins (e.g., 140-160 kDa) leave the cell. These changes in permeability are accompanied by the formation of membrane blebs. In this study, we took advantage of the well-known differences in affinity of various Ca(2+)-binding proteins for Ca(2+) and Sr(2+) vs. Ba(2+) to probe their involvement in each phase of the cell death cascade. Using fluorescence techniques at the cell population level (cuvette-based) and at the single-cell level (time-lapse videomicroscopy), we found that the replacement of Ca(2+) with either Sr(2+) or Ba(2+) delayed both MTX-induced activation of COP, as indicated by the uptake of ethidium bromide, and subsequent cell lysis, as indicated by the uptake of propidium iodide or the release of cell-associated green fluorescent protein. MTX-induced responses were mimicked by ionomycin and were significantly delayed in BAPTA-loaded cells. Experiments at the single-cell level revealed that Ba(2+) not only delayed the time to cell lysis but also caused desynchronization of the lytic phase. Last, membrane blebs, which were numerous and spherical in Ca(2+)-containing solutions, were poorly defined and greatly reduced in number in the presence of Ba(2+). Taken together, these results suggest that intracellular high-affinity Ca(2+)-binding proteins are involved in the MTX-induced changes in plasmalemmal permeability that are responsible for cell demise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.