Abstract
With a type of capacitatively coupled plasma enhanced chemical vapor deposition (PECVD) technique, where two specially designed electrodes face to each other, the inner surface of hollow 3-dimensional objects such as poly(ethylene terephthalate) (PET) bottles can be coated with diamond-like carbon (DLC) thin film. DLC-coated PET bottles obtained with this technique have an enhanced gas barrier property, and therefore are applicable to industrial use such as for the extension of the shelf-life of contents sensitive to gas permeation. In this paper, the impact of power frequency ranging from 2.5 to 13.56 MHz was studied in order to research the behavior of plasma inside PET bottles and resultant properties. Different power frequency turned out to be influential on gas barrier property, the overall and distribution of tint, and adhesion between DLC and PET substrate. In addition, positron annihilation turned out to be powerful tool for the comparison of different coating conditions because it clarifies the homogeneity of DLC thin films through providing information on overall structure and thickness of them. These findings can be used for the optimization not only in the beverage PET bottle application, but also in other capacitatively coupled PECVD devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Archives des Maladies Professionnelles et de l'Environnement
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.