Abstract

Asset management, as a systematic process of operating, maintaining, and upgrading physical assets, is an important element of decision-making in heavy equipment management and operation. Maintenance strategy selection plays a significant role in mining design. However, the nature of maintenance strategy selection is a complex multi-criteria decision making (MCDM) problem including both tangible and intangible parameters which are often in conflicting with each other. As well as when decision makers are uncertain in determining and defining the ratings and the weights of alternatives and criteria respectively, fuzzy theory provides an appropriate tool to handle the existing uncertainties. In this paper, a new fuzzy MCDM method based on the concepts of COPRAS (COmplex PRoportional ASsessment) and AHP (Analytical Hierarchy Process) was proposed to evaluate the feasible maintenance strategy. The linguistic terms are employed to assess the ratings and weights. Fuzzy AHP is utilized to calculate the weights of the evaluation criteria; then, the rankings of alternatives are computed based on fuzzy sets theory and COPRAS. A real world case study is presented to illustrate a potential application of the proposed model. Santrauka Turto valdymas, kaip sistemingas veiklos procesas materialiajam turtui palaikyti ir atnaujinti, yra svarbus sprendimų priėmimo sandas, reikalingas sunkiajai įrangai valdyti ir naudoti. Pasirinkti priežiūros strategiją yra ypač svarbu projektuojant kasybą. Tačiau techninės priežiūros strategijos parinkimo pobūdis yra sudėtingas daugiatikslio sprendimų priėmimo (MCDM) uždavinys, apimantis tiek materialius, tiek nematerialius aspektus, tarpusavyje dažnai prieštaraujančius. Kai sprendimų priėmėjui kyla neaiškumų nustatant ir apibrėžiant rodiklių vertes ir svorius, neraiškiųjų aibių teorija yra tinkama priemonė esamam neapibrėžtumui aprašyti. Straipsnyje pateikiamas naujas neraiškusis MCDM būdas, pagrįstas COPRAS (kompleksinio proporcingo projektų įvertinimo) ir AHP (analitinio hierarchijų proceso) metodais, tikslingoms nekilnojamojo turto palaikymo strategijoms įvertinti. Rodiklių vertės ir svoriai yra apibrėžti lingvistinėmis sąvokomis. Neraiškusis AHP taikomas vertinimo rodiklių svoriams apskaičiuoti. Paskui alternatyvų rangai nustatyti taikant neraiškiųjų aibių teoriją ir COPRAS metodą. Naujai pasiūlytas modelis pritaikytas realiam uždaviniui spręsti.

Highlights

  • In asset intensive industries such as mining and earthmoving operations, the productivity and reliability of capital assets is vital to financial success of projects

  • We propose an integrated approach based on fuzzy analytic hierarchy process (AHP) and COPRAS to solve multi-criteria decision making (MCDM) problems in which the weights of criteria and the performance ratings of alternatives are calculated based on linguistics terms

  • The maintenance strategy selection problem is often influenced by uncertainty in real world, and in such circumstances fuzzy set theory is a proper tool to face with this type of problems and model the existing uncertainty

Read more

Summary

Introduction

In asset intensive industries such as mining and earthmoving operations, the productivity and reliability of capital assets is vital to financial success of projects. There are a large number of tangible and intangible criteria, which often are in conflict with each other, that should be considered in selection of the best maintenance strategy. For these reasons, it is difficult to equipment managers choose the best maintenance strategy for each piece of equipment from a set of feasible alternatives, especially during the feasibility studies and plant design stages. We propose an integrated approach based on fuzzy AHP and COPRAS to solve MCDM problems in which the weights of criteria and the performance ratings of alternatives are calculated based on linguistics terms.

Possible alternative maintenance strategies
Fuzzy AHP
Preparing of the decision-making matrix X: X xx1211
The proposed model
Case Study
The implementation of proposed model
C2 C3 C4 R1 R2 R3 AC1 AC2 AV1 AV2 AV3 Criterion
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.