Abstract

The main objective of a maintenance policy consists of conducting maintenance actions at lower costs. This paper proposes an approach for comparing numerically three maintenance strategies, involving minimal repairs at failure, replacement with complete renewal only at the first failure, and replacement with complete renewal at each failure. These strategies are integrated into a modified block replacement policy that includes corrective and preventive maintenances. The approach proceeds by presenting the mathematical models at the component level and at the system level. As the renewal function for generalised Weibull distributions is impossible to obtain, a novel asymptotic algorithm is introduced for estimating the replacements number. However, a multi-component industrial example is proposed for selecting the strategy that minimises the maintenance costs. A sensitivity analysis is performed for comparing an opportunistic maintenance policy with the proposed replacement policy to check if substantial cost reduction still possible. The experiment results show clearly that the third strategy is the most efficient and reduces maintenance costs to a very low level. Finally, we think that the developed study provides a flexible and less costly solution to deal with maintenance decision-making for systems that do not have modern technological equipment to collect data from system breakdowns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.