Abstract

In this article, we present a novel maintenance policy optimization method for systems with two balanced components. The components in the system are assumed to degrade over time according to a bivariate Wiener process. The maintenance actions aim at eliminating the differences of degradation levels of system components at the cost of aggravating the degradation. Utilizing the Markov decision process, the maintenance model is put forward under both the finite and the infinite planning horizons, from which we find the structural properties of the optimal policies. Backwards dynamic programming and value iteration algorithms are employed to optimize the maintenance decisions. Examples along with sensitivity analysis are presented to facilitate the illustration and insight attainment. We find that the maintenance policies are to a great extent regulated by the absolute degradation difference between the two components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.