Abstract

Maintenance planning is a significant part of predictive maintenance, which involves task planning, resource scheduling, and prevention. With large-scale sensor systems in modern factories, much data will be captured during monitoring and maintenance of complex industrial equipment. Accumulated data facilitates maintenance planning becomes more thorough and timely. Recently, a knowledge graph (KG) was offered to handle large-scale, unorganized maintenance data semantically, resulting in better data usage. Some prior studies have utilized KG for maintenance planning with semantic searching or graph structure-based algorithms, nevertheless neglecting the prediction of potential linkage. To fill this gap, a maintenance-oriented KG is established firstly based on a well-defined domain-specific ontology schema and accumulated maintenance data. Then, an Attention-Based Compressed Relational Graph Convolutional Network is proposed to predict potential solutions and explain fault in maintenance tasks. Lastly, a maintenance case of oil drilling equipment is carried out, where the proposed model is compared with other cutting-edge models to demonstrate its effectiveness in link prediction. This research is anticipated to shed light on future adoption of KG in maintenance planning recommendations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.