Abstract
BackgroundSufficient nutrition contributes to rapid translational elongation and protein synthesis in eukaryotic cells and prokaryotic bacteria. Fast synthesis and accumulation of type III secretion system (T3SS) proteins conduce to the invasion of pathogenic bacteria into the host cells. However, the translational elongation patterns of T3SS proteins in pathogenic bacteria under T3SS-inducing conditions remain unclear. Here, we report a mechanism of translational elongation of T3SS regulators, effectors and structural protein in four model pathogenic bacteria (Pseudomonas syringae, Pseudomonas aeruginosa, Xanthomonas oryzae and Ralstonia solanacearum) and a clinical isolate (Pseudomonas aeruginosa UCBPP-PA14) under nutrient-limiting conditions. We proposed a luminescence reporter system to quantitatively determine the translational elongation rates (ERs) of T3SS regulators, effectors and structural protein under different nutrient-limiting conditions and culture durations.ResultsThe translational ERs of T3SS regulators, effectors and structural protein in these pathogenic bacteria were negatively regulated by the nutrient concentration and culture duration. The translational ERs in 0.5× T3SS-inducing medium were the highest of all tested media. In 1× T3SS-inducing medium, the translational ERs were highest at 0 min and then rapidly decreased. The translational ERs of T3SS regulators, effectors and structural protein were inhibited by tRNA degradation and by reduced levels of elongation factors (EFs).ConclusionsRapid translational ER and synthesis of T3SS protein need adequate tRNAs and EFs in nutrient-limiting conditions. Numeric presentation of T3SS translation visually indicates the invasion of bacteria and provides new insights into T3SS expression that can be applied to other pathogenic bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.