Abstract

Using a preparation of highly purified, adult rat Leydig cells and conditions of culture which we found to optimize testosterone production during 24 h, we sought to maintain optimal testosterone production for 3 d. Leydig cells cultured on Cytodex 3 beads at 19% O2 in Dulbecco's modified Eagle's medium-Ham's nutrient mixture F12 (1:1; vol/vol) containing 0.5 mg/ml total bovine lipoproteins (less than 1.222 g/ml) with maximal luteinizing hormone (LH) stimulation failed to maintain a constant amount of testosterone for 3 d. These cells did however secrete a similar amount of total delta 4-3-ketosteroids on each of the 3 culture d, indicating that their viability was preserved. The predominance of progesterone and 170H-progesterone relative to the amount of androstenedione found on Days 2 and 3 suggested that the activity of the cytochrome P450 C17-hydroxylase-C17,20-lyase enzyme in the smooth endoplasmic reticulum was diminished when Leydig cells were maintained in our primary culture for longer than 24 h. Decreasing the oxygen tension of the cultures from 19 to 5%, and decreasing the concentration of LH used to stimulate the Leydig cells from 100 to 0.1 ng/ml, were necessary to achieve maintenance of testosterone secretion without accumulation of other delta 4-3-ketosteroids during a 3-d period. Cells cultured in this fashion were still able to respond to maximal LH stimulation during Day 3, producing as much testosterone as if cultured for 24 h on Day 1 at 19% O2 with 100 ng/ml LH stimulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.