Abstract

Meatballs were prepared by mixing ground beef and spices and inoculated with E. coli O157:H7, L. monocytogenes, and S. enteritidis before packaged in modified atmosphere (3% O₂ + 50% CO₂ + 47% N₂) or aerobic conditions. The packaged samples were irradiated at 0.75, 1.5, and 3 kGy doses and stored at 4 °C for 21 d. Survival of the pathogens, total plate count, lipid oxidation, color change, and sensory quality were analyzed during storage. Irradiation at 3 kGy inactivated all the inoculated (approximately 10⁶ CFU/g) S. enteritidis and L. monocytogenes cells in the samples. The inoculated (approximately 10⁶ CFU/g) E. coli O157:H7 cells were totally inactivated by 1.5 kGy irradiation. D¹⁰-values for E. coli O157:H7, S. enteritidis, and L. monocytogenes were 0.24, 0.43, and 0.41 kGy in MAP and 0.22, 0.39, and 0.39 kGy in aerobic packages, respectively. Irradiation at 1.5 and 3 kGy resulted in 0.13 and 0.36 mg MDA/kg increase in 2-thiobarbituric acid-reactive substances (TBARS) reaching 1.02 and 1.49 MDA/kg, respectively, on day 1. Irradiation also caused significant loss of color and sensory quality in aerobic packages. However, MAP effectively inhibited the irradiation-induced quality degradations during 21-d storage. Thus, combining irradiation (3 kGy) and MAP (3% O₂ + 50% CO₂ + 47% N₂) controlled the safety risk due to the potential pathogens and maintained qualities of meatballs during 21-d refrigerated storage. Combined use of gamma irradiation and modified atmosphere packaging (MAP) can maintain quality and safety of seasoned ground beef (meatball). Seasoned ground beef can be irradiated at 3 kGy and packaged in MAP with 3% O₂ + 50% CO₂ + 47% N₂ gas mixture in a high barrier packaging materials. These treatments can significantly decrease risk due to potential pathogens including E. coli O157:H7, L. monocytogenes, and S. enteritidis in the product. The MAP would reduce the undesirable effects of irradiation on quality, and extend the shelf life of the product for up to 21 d at 3 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call