Abstract

Relay orbits about the Earth-Moon collinear libration point shave significant valueon the exploration of the lunar farside, but have complex kinetic characteristics in the nature, thus the orbit maintenance has always been focused in the deep space navigation and control field. This paper explores orbit maintenance technology of the relay orbit about the collinear Earth-Moon libration points under the real dynamical conditions. First, based on the restricted three-body problem, the mathematic model of relay orbit station-keeping with the real dynamical model is analyzed. The continue-circling method is presented for the relay orbit maintenance with the two control styles, i.e., the Halo style and the Lissajous style. Second, with the third-body gravitation and the solar radiation pressure perturbations considered, the method is tested and analyzed by using the numerical simulations to achieve the control frequency and the corresponding velocity increment required by the relay orbits with different amplitudes. According to the simulations, the Lissajous style is suitable to the orbit maintenance with a control interval of 7.4 days and a velocity increment less than 20 m/s/a. Furthermore, the method has been successfully applied in Chang'e-2 and Chang'e-5T1 extended missions and can provide a beneficial reference for the future Chang'e-4 mission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.