Abstract

Selfish genetic elements that gain a transmission advantage through the destruction of sperm have grave implications for drive male fertility. In the X-linked meiotic drive system (SR) of a stalk-eyed fly, we found that SR males have greatly enlarged testes and maintain high fertility despite the destruction of half of their sperm, even when challenged with fertilizing large numbers of females. Conversely, we observed reduced allocation of resources to the accessory glands that probably explains the lower mating frequency of SR males. Body size and eye span were also reduced, which are likely to impair viability and precopulatory success. We discuss the potential evolutionary causes of these differences between drive and standard males.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call