Abstract

Understanding the ecological processes that maintain community function in systems experiencing species loss, and how these processes change over time, is key to understanding the relationship between community structure and function and predicting how communities may respond to perturbations in the Anthropocene. Using a 30‐year experiment on desert rodents, we show that the impact of species loss on community‐level energy use has changed repeatedly and dramatically over time, due to (1) the addition of new species to the community, and (2) a reduction in functional redundancy among the same set of species. Although strong compensation, initially driven by the dispersal of functionally redundant species to the local community, occurred in this system from 1997 to 2010, since 2010, compensation has broken down due to decreasing functional overlap within the same set of species. Simultaneously, long‐term changes in sitewide community composition due to niche complementarity have decoupled the dynamics of compensation from the overall impact of species loss on community‐level energy use. Shifting, context‐dependent compensatory dynamics, such as those demonstrated here, highlight the importance of explicitly long‐term, metacommunity, and eco‐evolutionary perspectives on the link between species‐level fluctuations and community function in a changing world.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call