Abstract

The large-scale circulation anomalies associated with the 1988 drought and the 1993 floods are investigated with the National Centers for Environmental Prediction Reanalysis data and a linear stationary wave model. The transient vorticity and thermal forcings are explicitly calculated and the diabatic heating is derived as a residual in the thermodynamic energy equation. Using the April‐June (AMJ) data for 1988, and June‐August (JJA) data for 1993, the linear stationary wave model is able to reproduce the main features of the geopotential height anomaly for the two seasons when all forcings are included. This provides a basis for further investigation of stationary wave response to different forcing mechanisms using the linear model. Within the linear model framework, the linear model responses to different forcings are examined separately. The results indicate that the 1988 anomaly over the United States is a result of both the diabatic heating and the transient vorticity and thermal forcings. The large anticyclonic anomalies over the North Pacific and Canada are forced mainly by the diabatic heating. The 1993 anomaly, however, is dominated by the response to transient vorticity forcing. By further separating the linear model responses to regional diabatic heating anomalies in 1988, the results indicate that the western North Pacific heating is entirely responsible for the anticyclonic center over the North Pacific, which causes the northward shift and intensification of the Pacific jet stream. The eastern North Pacific heating/cooling couplet is the most important for maintaining the North American circulation

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call