Abstract
Motor learning with professional experience leads to cortical reorganization with plasticity. Long-term training facilitates motor cortical excitability. It is not clear how beneficial cortical plasticity is maintained during long-term training. We studied this question in 15 elite badminton athletes and 15 novices. We hypothesize that motor cortical excitation increases after long-term training and this is accompanied by increased motor cortical inhibition. Motor cortical excitation was measured with motor-evoked potential (MEP) input–output curve using transcranial magnetic stimulation (TMS). Motor cortical inhibition was measured with short-interval intracortical inhibition (SICI) and long-interval intracortical inhibition (LICI) by a paired-pulse TMS paradigm. We found MEP was increased at high TMS intensity and the MEP input–output curve was steeper in athletes compared to novices. Both SICI and LICI were also increased in athletes. In addition, both SICI and LICI were correlated with the slope of MEP input–output curve in athletes but not in novices. The slope of MEP input–output curve, SICI and LICI were also correlated with the training time in athletes. We conclude that both cortical excitation and cortical inhibition are increased, and that the balance between cortical excitation and inhibition is maintained during long-term training.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.