Abstract

Rolling stock needs regular maintenance in a maintenance facility. Rolling stock from different fleets are routed to maintenance facilities by interchanging the destinations of trains at common stations and by using empty drives. We consider the problem of locating maintenance facilities in a railway network under uncertain or changing line planning, fleet planning, and other uncertain factors. These uncertainties and changes are modeled by a discrete set of scenarios. We show that this new problem is NP-hard and provide a two-stage stochastic programming and a two-stage robust optimization formulation. The second-stage decision is a maintenance routing problem with similarity to a minimum cost-flow problem. We prove that the facility location decisions remain unchanged under a simplified routing problem, and this gives rise to an efficient mixed-integer programming (MIP) formulation. This result also allows us to find an efficient decomposition algorithm for the robust formulation based on scenario addition (SA). Computational work shows that our improved MIP formulation can efficiently solve instances of industrial size. SA improves the computational time for the robust formulation even further and can handle larger instances due to more efficient memory usage. Finally, we apply our algorithms on practical instances of the Netherlands Railways and give managerial insights.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.