Abstract
Recently, Condition-based maintenance is a popular method to minimize the cost of maintenance failures in power systems. In order to effectively overcome the uncertainty of operational variables and information in offshore substations, a Type-2 fuzzy logic approach is proposed in this paper. The maintenance advisor optimize the maintenance schedules with multi-objective evolutionary algorithm, considering only major system variables. During operation, the offshore substation will experience continuing ageing and shifts in control, weather and load factors, measurement and all other equipments with uncertainties. More importantly, the advisor estimates the changes of reliability indices by Type-2 fuzzy logic and sends the changes back to the maintenance optimizer. At the same time, the maintenance advisor will also report to the maintenance optimizer any drastic deterioration of load-point reliability within each substation. The data analysis results shows this approach avoids complex inference process, it significantly reduces the computational complexity and rule base than conventional Type-1 fuzzy logic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.