Abstract
We study the performance of concurrency control algorithms in maintaining temporal consistency of shared data in hard real time systems. In our model, a hard real time system consists of periodic tasks which are either write only, read only or update transactions. Transactions may share data. Data objects are temporally inconsistent when their ages and dispersions are greater than the absolute and relative thresholds allowed by the application. Real time transactions must read temporally consistent data in order to deliver correct results. Based on this model, we have evaluated the performance of two well known classes of concurrency control algorithms that handle multiversion data: the two phase locking and the optimistic algorithms, as well as the rate monotonic and earliest deadline first scheduling algorithms. The effects of using the priority inheritance and stack based protocols with lock based concurrency control are also studied. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.