Abstract

In internal-reflection metrology using prisms, the prism is usually mounted on a rotation/translation stage to enable adjusting angle and location of the laser footprint on the surface. If a visual inspection method is used to find the laser footprint, the task becomes impossible if invisible radiation in the near infrared is employed. In addition, it may be desirable to perform angular scan experiments with a stationary footprint on the surface during scans, or even to automatically probe specific points on an extended prism face for predetermined incidence angles. In this paper, a formulation is developed to determine the required translation along the prism face to allow maintaining the laser footprint stationary under a given rotation. A web-based app developed under the scope of this work demonstrates the applicability of the approach for silica, BK7 and SF2 glasses, in the wavelength range from 500 to 1500 nm and for an arbitrary geometry of the glass prism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call