Abstract

Equipment failures and associated maintenance have an impact on the profitability of mines. Implementing maintenance at suitable time intervals can save money and improve the reliability and maintainability of mining equipment. This paper discusses aspects of maintainability prediction for mining machinery. For this purpose, a software tool, called GenRel, is developed. In GenRel, it is assumed that failures of mining equipment caused by an array of factors follow the biological evolution process. GenRel then simulates the failure occurrences during a time period of interest using Genetic Algorithms (GAs) coupled with a statistical methodology. Two case studies on maintainability analysis and prediction of a mine’s hoist system in two different time intervals, three months and six months are discussed. The data are collected from a typical underground mine in the Sudbury area in Ontario, Canada. In each case study, a statistical test is carried out to examine the similarity between the predicted data set and the real-life data set in the same time period. The objectives include an assessment of the applicability of GenRel using real-life data and an investigation of the relationship between data size and prediction results. Discrete and continuous probability distribution functions are applied to the input data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.