Abstract

Mainstream nitritation-anammox is of strong interest to energy- and resource-efficient domestic wastewater treatment. However, there lack in-depth studies of pretreatment, tests of actual wastewater, and examination of long-term performance. Herein, an upflow nitritation-anammox granular reactor has been investigated to treat primary effluent with a hybrid anaerobic reactor (HAR) as pretreatment for more than 300 days. This system achieved 92% of COD removal, 75% of which was accomplished by the HAR, and had an average final effluent COD concentration of 22 mg L−1. More than 90% of ammonium was removed in the nitritation-anammox reactor, achieving a nitrogen removal rate of 81.0 g N m−3 d−1 in the last stage. The accumulation of sulfate-reducing bacteria in the HAR evidenced the effect of sulfate on COD removal and subsequent nitrogen removal. Anammox bacteria (predominantly Ca. Jettenia asiatica) accounted for up to 40.2% of total granular communities, but their abundance decreased over time in the suspended communities. The dynamics of major metabolisms and functional genes involved in nitrogen conversion were predicted by PICRUSt based on the taxonomic data, providing more insights into the functions of the microbial communities. These results have demonstrated the effectiveness and importance of anaerobic pretreatment to successful mainstream nitritation-anammox.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call