Abstract

The sealing characteristics of an air-cooled gas turbine disk cavity have been studied using laser sheet flow visualization. Experiments were performed on a simplified half-scale model of an actual gas turbine disk cavity. This type of rotor–stator geometry with a double-toothed-rim (DTR) seal at the outer periphery and a labyrinth seal at the inner periphery of the cavity has been tested for its ability in preventing ingress of hot mainstream gases. The results show good agreement with previously esimated design data. Experiments were conducted for various labyrinth seal flow rates and rotational Reynolds numbers up to 1.52 × 106. The effects of rotor eccentricity on minimum purge flows have also been discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.