Abstract

The relative aerodynamic and performance effects associated with rotor–NGV gap coolant injections were investigated in the Axial Flow Turbine Research Facility (AFTRF) of the Pennsylvania State University. This study quantifies the effects of the coolant injection on the aerodynamic performance of the turbine for radial cooling, impingement cooling in the wheelspace cavity and root injection. Overall, it was found that even a small quantity (1 percent) of cooling air can have significant effects on the performance character and exit conditions of the high pressure stage. Parameters such as the total-to-total efficiency, total pressure loss coefficient, and three-dimensional velocity field show local changes in excess of 5, 2, and 15 percent, respectively. It is clear that the cooling air disturbs the inlet end-wall boundary layer to the rotor and modifies secondary flow development, thereby resulting in large changes in turbine exit conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call