Abstract
The high inertia and long time-delay characteristics of main steam temperature control system in a thermal power plant will reduce the system control performance. In order to solve this problem, a genetic algorithm-back propagation (GA-BP) optimised fuzzy neural network control strategy is proposed in this paper. Gauss function is chosen as membership function and fuzzy neural network is designed. GA combined with BP algorithm is chosen for the offline parameters optimisation of fuzzy neural network, and then BP algorithm is used for online parameters optimisation. GA-BP optimisation algorithm overcomes the shortcomings of GA algorithm or BP algorithm which is used to adjust the parameters of fuzzy neural network controller. The simulation experiment compared with cascade PID and fuzzy neural network is carried out. Simulation results show that the controller based on GA-BP optimised fuzzy neural network has faster response speed, smaller overshoot and error, better tracking performance, and reduces the lag effect of the control system under different load, working conditions and membership functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering Systems Modelling and Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.