Abstract

The phospholipid fatty acid (PLFA) composition of soils was analysed at three poplar-based silvo-arable systems and at one willow-based silvo-grassland alley agroforestry system in Central Germany. The objective was to analyse tree row effects on the PLFA composition of main fungal and main bacterial groups. The fungal groups were BAM (Basidiomycota + Ascomycota + Mucoromycota) and AMF (Arbuscular Mycorrhizal Fungi). The bacterial groups were Gram-negative, Firmicutes, and Actinobacteria. The total PLFA content varied between 53 and 170 nmol g−1 soil. Total PLFA and microbial biomass carbon (MBC) showed a strong linear relationship, which resulted in a mean MBC/total PLFA ratio of 4.2 μg nmol−1. AMF contributed on average 4 mol% and the fungal BAM group 10 % to total PLFA. Gram-negative bacteria contributed on average 37 mol%, Firmicutes 23 mol%, and Actinobacteria 6 mol% to total PLFA. The presence of poplar or willow trees increased the mean total PLFA content in comparison with the alleyways by 30 %. Especially the mean contribution of fungal PLFA to total PLFA showed a significant +7.0 mol% increase in the tree row compared with the alleyways, exclusively caused by the BAM group (+7.6 mol%), whereas the contribution of the AMF PLFA linearly decreased from the middle of the alleyway to the tree row at all sites. Within the alleyways, the Gram-negative/Firmicutes PLFA ratio showed a significant decline from the 1 m up to the 24 m distance samples at sites Dornburg and Forst. Despite a decrease of AMF in tree rows, agroforestry tree rows led to a rapid increase in fungi, most likely due to the promotion of ecto-mycorrhizal fungi.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call