Abstract
The ability to model the temporal dimension is essential to many applications. Furthermore, the rate of increase in database size and stringency of response time requirements has out-paced advancements in processor and mass storage technology, leading to the need for parallel temporal database management systems. In this paper, we introduce a variety of parallel temporal aggregation algorithms for the shared-nothing architectures these algorithms are based on the sequential Aggregation Tree algorithm. We are particularly interested in developing parallel algorithms that can maximally exploit available memory to quickly compute large-scale temporal aggregates without intermediate disk writes and reads. Via an empirical study, we found that the number of processing nodes, the partitioning of the data, the placement of results, and the degree of data reduction effected by the aggregation impacted the performance of the algorithms. For distributed result placement, we discovered that Greedy Time Division Merge was the obvious choice. For centralized results and high data reduction, Pairwise Merge was preferred for a large number of processing nodess for low data reduction, it only performed well up to 32 nodes. This led us to a centralized variant of Greedy Time Division Merge which was best for the remaining cases. We present a cost model that closely predicts the running time of Greedy Time Division Merge.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.