Abstract

For hard rock subsea tunnels the most challenging rock mass conditions are in most cases represented by major faults/weakness zones. Poor stability weakness zones with large water inflow can be particularly problematic. At the pre-construction investigation stage, geological and engineering geological mapping, refraction seismic investigation and core drilling are the most important methods for identifying potentially adverse rock mass conditions. During excavation, continuous engineering geological mapping and probe drilling ahead of the face are carried out, and for the most recent Norwegian subsea tunnel projects, MWD (Measurement While Drilling) has also been used. During excavation, grouting ahead of the tunnel face is carried out whenever required according to the results from probe drilling. Sealing of water inflow by pre-grouting is particularly important before tunnelling into a section of poor rock mass quality. When excavating through weakness zones, a special methodology is normally applied, including spiling bolts, short blast round lengths and installation of reinforced sprayed concrete arches close to the face. The basic aspects of investigation, support and tunnelling for major weakness zones are discussed in this paper and illustrated by cases representing two very challenging projects which were recently completed (Atlantic Ocean tunnel and T-connection), one which is under construction (Ryfast) and one which is planned to be built in the near future (Rogfast).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call