Abstract

The aim of this study was to investigate the effects of matrix particle size, reinforcement particle size, volume fraction, and their interactions on the wear characteristics of Al–SiCp composites. Central composite design method was used to perform a series of experiments. The statistical analysis of experimental results showed that both main effect and interaction effect of factors investigated were effective on the wear behavior of Al–SiCp composites. Wear loss decreased as volume fraction increased; however, beyond volume fraction of 17.5%, it increased due to reinforcement particle clustering depending on volume fraction and matrix particle size to reinforcement particle size ratio. With decreasing of matrix particle size and increasing of reinforcement particle size, wear loss also decreased. However, after a certain volume fraction, large sized reinforcement particles had a negative effect on the wear resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.