Abstract

Polymer dots (PDs) ingrained from biopolymers are characterized by their biocompatibility & non-toxicity to be superiorly applicable for biomedicines. The point of novelty in the current study is to focus on the effect of Maillard reaction for conjugation of chitosan with glucose to enhance the affinity of chitosan as a biological resource of PDs. Chitosan-glucose conjugate was firstly prepared by Maillard reaction. PDs were nucleated from chitosan (C1 acidic, 10.6 nm & C2 basic, 11.4 nm) and chitosan-glucose conjugate (C3 acidic, 6.8 nm & C4 basic, 5.7 nm). The affinity of chitosan versus chitosan-glucose conjugate as molecular precursors for PDs as antiviral and anticancer laborers was studied. The synthesized PDs were tested against lung cancer (NSCLC, A549) and the estimated IC50 was 282.4 & 165.4 μg/mL for PDs (C3 & C4) ingrained from chitosan-glucose conjugate. The antiviral action of PDs against Coronavirus (229E) was estimated and the obtained IC50 for C3 & C4 was 43.6 and 19.3 mg/mL, respectively. PDs ingrained from chitosan-glucose conjugate showed higher anticancer and antiviral activities compared to that clustered from chitosan. Consequently, the modification of chitosan via Maillard reaction enhanced the biological affinity of the obtained PDs to be effectively applicable as antitumor and antiviral laborers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call