Abstract

Photoinduced charge separation is the key step determining the efficiency of photon-to-electron conversion in solar cells, while charge carrier lifetimes govern the overall solar cell performance. Experiments report that copper(I) thiocyanate (CuSCN) is a very promising hole extraction layer for perovskite solar cells. Using nonadiabatic molecular dynamics combined with ab initio time-domain density functional theory, we show that termination of CH3NH3PbI3 (MAPbI3) at MAPbI3/CuSCN heterojunctions has a strong influence on both charge separation and recombination. Both processes are favored by MAI termination, compared to PbI2 termination. Because the MAPbI3 valence band originates from iodine orbitals while the conduction band arises from Pb orbitals, MAI termination places holes close to CuSCN, favoring extraction, and creates an MAI barrier for recombination of electrons in MAPbI3 and holes in CuSCN. The opposite is true for PbI2 termination. The origin of these effects is attributed solely to the properties of the MAPbI3 surfaces, and therefore, the conclusions should apply to other hole-transporting materials and can be generalized to other perovskites. Importantly, the simulations show that the injected hole remains hot for several hundreds of femtoseconds, allowing it to escape the interfacial region and prevent formation of bound excitons. This study suggests that metal halide perovskites should be treated with an organic precursor, such as MAI, prior to the formation of their interfaces with hole-transporting materials. The reported results advance the fundamental understanding of the highly unusual properties of metal halide perovskites and provide specific guidelines for optimizing the performance of perovskite solar cells and other devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call