Abstract
Parkinson’s Disease (PD) severity level detection is crucial for timely and effective medical intervention. Due to the scarcity of PD gait data especially subject samples of higher severity levels, data generation techniques are adopted. This paper proposes the Mahalanobis-Metric-based Oversampling Technique (MMOTE), an algorithm that generates data within the boundaries of the existing data samples while also being diverse to address the problem of class imbalance within a dataset. The proposed technique is evaluated on PD gait data and the results show that MMOTE outperformed alternative oversampling techniques. A hybrid approach of combining ensemble learning with oversampling the minority class for PD severity level assessment is adopted. The minority class recognition is enhanced with an accuracy of 99%, thereby improving the generalizability of the classifier. Statistical analyses such as Levene’s test and Wilcoxon signed-rank test are conducted to validate the significance of the findings. Moreover, the importance of optimal sample size determination for obtaining reliable prediction results is also discussed. Overall classification accuracy of ≈98% is reported using sample size estimated by plotting the learning curve for Random Forest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.