Abstract

The adaptor protein CARMA1 is required for antigen receptor-triggered activation of IKK and JNK in lymphocytes. Once activated, the events that subsequently turn off the CARMA1 signalosome are unknown. In this study, we found that antigen receptor-activated CARMA1 underwent lysine 48 (K48) polyubiquitination and proteasome-dependent degradation. The MAGUK region of CARMA1 was an essential player in this event; the SH3 and GUK domains contained the main ubiquitin acceptor sites, and deletion of a Hook domain (an important structure for maintaining inactive MAGUK proteins) between SH3 and GUK was sufficient to induce constitutive ubiquitination of CARMA1. A similar deletion promoted the ubiquitination of PSD-95 and Dlgh1, suggesting that a conserved mechanism may control the turnover of other MAGUK family protein complexes. Functionally, we demonstrated that elimination of MAGUK ubiquitination sites in CARMA1 resulted in elevated basal and inducible NF-kappaB and JNK activation as a result of defective K48 ubiquitination and increased persistence of this ubiquitination-deficient CARMA1 protein in activated lymphocytes. The coordination of degradation with the full activation of the CARMA1 molecule likely provides an intrinsic feedback control mechanism to balance lymphocyte activation upon antigenic stimulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call