Abstract

The Magsat crustal anomaly field depicts a previously-unidentified long-wavelength negative anomaly centered over southeastern Georgia. Examination of Magsat ascending and descending passes clearly identifies the anomalous region, despite the high-frequency noise present in the data. Using ancillary seismic, electrical conductivity, Bouguer gravity, and aeromagnetic data, a preliminary model of crustal magnetization for the southern Appalachian region is presented. A lower crust characterized by a pervasive negative magnetization contrast extends from the New York-Alabama lineament southeast to the Fall Line. In southern Georgia and eastern Alabama (coincident with the Brunswick Terrane), the model calls for lower crustal magnetization contrast of -2.4 A/m; northern Georgia and the Carolinas are modeled with contrasts of -1.5 A/m. Large-scale blocks in the upper crust which correspond to the Blue Ridge, Charlotte belt, and Carolina Slate belt, are modeled with magnetization contrasts of -1.2 A/m, 1.2 A/m, and 1.2 A/m respectively. The model accurately reproduces the amplitude of the observed low in the equivalent source Magsat anomaly field calculated at 325 km altitude and is spatially consistent with the 400 km lowpass-filtered aeromagnetic map of the region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call