Abstract

We have developed and validated a computer simulation code at the Lawrence Livermore National Laboratory (LLNL) to predict the performance of a railgun electromagnetic accelerator. The code, called MAGRAC (MAGnetic Railgun ACcelerator), models the performance of a railgun driven by a magnetic flux compression current generator (MFCG). The MAGRAC code employs a time-step solution of the nonlinear time-varying element railgun circuit to determine rail currents. From the rail currents, the projectile acceleration, velocity, and position are found. We have validated the MAGRAC code through a series of eight railgun tests conducted jointly with the Los Alamos National Laboratory. This paper describes the formulation of the MAGRAC railgun model and compares the predicted current waveforms with those obtained from full-scale experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.