Abstract
In the last decades, collinear magnetic insulating systems have emerged as promising energy-saving information carriers. Their elementary collective spin excitations, i.e., magnons, can propagate for long distances bypassing the Joule heating effects that arise from electron scattering in metal-based devices. This Tutorial article provides an introduction to theoretical and experimental advances in the study of magnonics in collinear magnetic insulating systems. We start by outlining the quantum theory of spin waves in ferromagnetic and antiferromagnetic systems, and we discuss their quantum statistics. We review the phenomenology of spin and heat transport of the coupled coherent and incoherent spin dynamics and the interplay between magnetic excitations and lattice degrees of freedom. Finally, we introduce the reader to the key ingredients of two experimental probes of magnetization dynamics, spin transport and NV-center relaxometry setups, and discuss experimental findings relevant to the outlined theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.