Abstract

The paradigm of magnonics is based on utilization of propagating spin waves (or their quanta-magnons) for signal transmission and processing in magnetic-field-controlled devices. Implementation of magnonic devices for future-generation microelectronics requires the use of spin-wave guiding structures with micrometer- to nanometer-sized dimensions. Therefore, the deep understanding of propagation, excitation, and control of spin waves in microscopic waveguides is an absolute prerequisite for further developments in the field. Here we review recent experiments on spin-wave propagation in microscopic magnonic waveguides utilizing high-resolution Brillouin light-scattering spectroscopy enabling 2-D visualization of spin waves on the nanoscale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.