Abstract

Klein tunneling associated with particle-antiparticle pair productions across a potential barrier is a key prediction of quantum-field theory for relativistic particles. Yet, a direct experimental realization is hampered by the particles large rest mass resulting in high potential barrier. Here, for non-Hermitian antiferromagnets, at the verge of the anti-parity-time symmetry transition, chiral magnons are demonstrated to offer a bosonic platform to access Klein tunneling at meV energies in experimentally feasible settings. Our analytical and numerical simulations evidence that magnetic damping renders a low energy mechanism for the breakdown of the magnonic vacuum and for creating particle-antiparticle pairs in strong magnetic fields. Adopting Feynman’s picture for antiparticles, the tunneling time of an incident magnon wave packet across a supercritical barrier is found to be negative. The uncovered aspects point to the potential of chiral magnons for addressing fundamental physics in a conceptually simple setup with the potential for use in chirality-dependent magnonic computing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call