Abstract

Strongly interacting nanomagnetic systems are pivotal across next-generation technologies including reconfigurable magnonics and neuromorphic computation. Controlling magnetization states and local coupling between neighboring nanoelements allows vast reconfigurability and a host of associated functionalities. However, existing designs typically suffer from an inability to tailor interelement coupling post-fabrication and nanoelements restricted to a pair of Ising-like magnetization states. Here, we propose a class of reconfigurable magnonic crystals incorporating nanodisks as the functional element. Ferromagnetic nanodisks are crucially bistable in macrospin and vortex states, allowing interelement coupling to be selectively activated (macrospin) or deactivated (vortex). Through microstate engineering, we leverage the distinct coupling behaviors and magnonic band structures of bistable nanodisks to achieve reprogrammable magnonic waveguiding, bending, gating, and phase-shifting across a 2D network. The potential of nanodisk-based magnonics for wave-based computation is demonstrated via an all-magnon interferometer exhibiting XNOR logic functionality. Local microstate control is achieved here via topological magnetic writing using a magnetic force microscope tip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.