Abstract

We present a theoretical model for the longitudinal spin-Seebeck effect (LSSE) in bilayers made of a ferromagnetic insulator (FMI), such as yttrium iron garnet (YIG), and a normal metal (NM), such as platinum (Pt), that relies on the bulk magnon spin current created by the temperature gradient across the thickness of the FMI. We show that the spin current pumped into the NM layer by the magnon accumulation in the FMI provides continuity of the spin current at the FMI/NM interface and is essential for the existence of the longitudinal spin-Seebeck effect. The results of the theory are in good agreement with experimental data for the variation of the LSSE with the sample temperature and with the FMI layer thickness in YIG/Pt bilayers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.