Abstract

We present a nonlocal spin transport theory for the coupled dynamics of magnetization and lattice vibrations in antiferromagnetic insulators. We find that magnon-polaron formation, i.e., coherently hybridized magnon and acoustic phonon modes, not only leads to anomalous features in the nonlocal spin current but also renormalizes the spin-flop transition field of the antiferromagnets. A length scale for the magnon-polaron formation below which the spin current is not affected by the lattice is also extracted from this nonlocal setup.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.