Abstract

We present the perturbation theory for lattice magnon fields of the D-dimensional O(3) Heisenberg ferromagnet. The effective Hamiltonian for the lattice magnon fields is obtained starting from the effective Lagrangian, with two dominant contributions that describe magnon–magnon interactions identified as a usual gradient term for the unit vector field and a part originating in the Wess–Zumino–Witten term of the effective Lagrangian. Feynman diagrams for lattice scalar fields with derivative couplings are introduced, on the basis of which we investigate the influence of magnon–magnon interactions on magnon self-energy and ferromagnet free energy. We also comment appearance of spurious terms in low-temperature series for the free energy by examining magnon–magnon interactions and internal symmetry of the effective Hamiltonian (Lagrangian).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.