Abstract

It has been shown that, in the infinite length limit, the magnons of the gauge theory spin chain can form bound states carrying one finite and one strictly infinite R-charge. These bound states have been argued to be associated to simple poles of the multi-particle scattering matrix and to world sheet solitons carrying the same charges. Classically, they can be mapped to the solitons of the complex sine-Gordon theory. Under relatively general assumptions we derive the condition that simple poles of the two-particle scattering matrix correspond to physical bound states and construct higher bound states ``one magnon at a time''. We construct the scattering matrix of the bound states of the BDS and the AFS S-matrices. The bound state S-matrix exhibits simple and double poles and thus its analytic structure is much richer than that of the elementary magnon S-matrix. We also discuss the bound states appearing in larger sectors and their S-matrices. The large 't Hooft coupling limit of the scattering phase of the bound states in the SU(2) sector is found to agree with the semiclassical scattering of world sheet solitons. Intriguingly, the contribution of the dressing phase has an independent world sheet interpretation as the soliton-antisoliton scattering phase shift. The small momentum limit provides independent tests of these identifications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.