Abstract

We calculate the quasiparticle dispersion and spectral weight of the quasiparticle that results when a hole is added to an antiferromagnetically ordered CuO$_2$ plane of a cuprate superconductor. We also calculate the magnon contribution to the quasiparticle spectral function. We start from a multiband model for the cuprates considered previously [Nat. Phys. \textbf{10}, 951 (2014)]. We map this model and the operator for creation of an O hole to an effective one-band generalized $t-J$ model, without free parameters. The effective model is solved using the state of the art self-consistent Born approximation. Our results reproduce all the main features of experiments. They also reproduce qualitatively the dispersion of the multiband model, giving better results for the intensity near wave vector $(\pi,\pi)$, in comparison with the experiments. In contrast to what was claimed in [Nat. Phys. \textbf{10}, 951 (2014)], we find that spin fluctuations play an essential role in the dynamics of the quasiparticle, and hence in both its weight and dispersion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.