Abstract

Encapsulation and release behavior of a water-insoluble drug, magnolol, using a core-shell polysaccharide-based nanoparticle, manipulating the cellular internalization and controlled cytotoxic effect of magnolol-loaded nanoparticles over the A10 vascular smooth muscle cells (VSMCs) was reported. A magnolol-polyvinylpyrrolidone (PVP) core phase was prepared, followed encapsulating by an amphiphilic carboxymethyl-hexanoyl chitosan (CHC) shell to form a magnolol-loaded core-shell hydrogel nanoparticles (termed magnolol-CHC nanoparticles). The resulting magnolol-CHC nanoparticles were employed for evaluation of drug release and controlled cytotoxic inhibition of VSMCs migration in vitro. A sustained release of the magnolol from the nanoparticles was determined. The magnolol-CHC nanoparticles exhibited outstanding cellular uptake efficiency, and under a cytotoxic evaluation, an increased antiproliferative effect and effective inhibition of VSMC migration as a result of efficient intracellular delivery of the encapsulated magnolol in comparison to free magnolol was achieved. We then envision a potential intracellular medication strategy with improved biological and therapeutic efficacy using the magnolol-CHC nanoparticles illustrated in this work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call