Abstract

Magnolin (MGL), a compound derived from the magnolia plant, has inhibitory effects on tumor cell invasion and growth. His study aims to explore the antitumor effect and underlying molecular mechanism of MGL against human cervical cancer. We found that MGL inhibited the proliferation, migration, and invasiveness of cervical cancer cells in vitro and in vivo. The underlying mechanism was shown to involve MGL-induced inhibition of JNK/Sp1-mediated MMP15 transcription and translation. Overexpression of JNK/Sp1 resulted in significant restoration of MMP15 expression and the migration and invasion capabilities of MGL-treated cervical cancer cells. MGL modulated the cervical cancer microenvironment by inhibiting cell metastasis via targeting IL-10/IL-10 receptor B (IL-10RB) expression, thereby attenuating JNK/Sp1-mediated MMP15 expression. Analysis of the gut microbiota of mice fed MGL revealed a significant augmentation in Lachnospiraceae bacteria, known for their production of sodium butyrate. In vivo experiments also demonstrated synergistic inhibition of cervical cancer cell metastasis by MGL and sodium butyrate co-administration. Our study provides pioneering evidence of a novel mechanism by which MGL inhibits tumor growth and metastasis through the IL-10/IL-10RB targeting of the JNK/Sp1/MMP15 axis in human cervical cancer cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call