Abstract

BackgroundThe bark of magnolia has been used in Oriental medicine to treat a variety of remedies, including some neurological disorders. Magnolol (Mag) and honokiol (Hon) are isomers of polyphenolic compounds from the bark of Magnolia officinalis, and have been identified as major active components exhibiting anti-oxidative, anti-inflammatory, and neuroprotective effects. In this study, we investigate the ability of these isomers to suppress oxidative stress in neurons stimulated by the ionotropic glutamate receptor agonist N-methyl-D-aspartate (NMDA) and oxidative and inflammatory responses in microglial cells activated by interferon-γ (IFNγ) and lipopolysaccharide (LPS). We also attempt to elucidate the mechanism and signaling pathways involved in cytokine-induced production of reactive oxygen species (ROS) in microglial cells.MethodsDihydroethidium (DHE) was used to assay superoxide production in neurons, while CM-H2DCF-DA was used to test for ROS production in murine (BV-2) and rat (HAPI) immortalized microglial cells. NADPH oxidase inhibitors (for example, diphenyleneiodonium (DPI), AEBSF, and apocynin) and immunocytochemistry targeting p47phox and gp91phox were used to assess the involvement of NADPH oxidase. Western blotting was used to assess iNOS and ERK1/2 expression, and the Griess reaction protocol was employed to determine nitric oxide (NO) concentration.ResultsExposure of Hon and Mag (1–10 μM) to neurons for 24 h did not alter neuronal viability, but both compounds (10 μM) inhibited NMDA-stimulated superoxide production, a pathway known to involve NADPH oxidase. In microglial cells, Hon and Mag inhibited IFNγ±LPS-induced iNOS expression, NO, and ROS production. Studies with inhibitors and immunocytochemical assay further demonstrated the important role of IFNγ activating the NADPH oxidase through the p-ERK-dependent pathway. Hon and, to a lesser extent, Mag inhibited IFNγ-induced p-ERK1/2 and its downstream pathway for ROS and NO production.ConclusionThis study highlights the important role of NADPH oxidase in mediating oxidative stress in neurons and microglial cells and has unveiled the role of IFNγ in stimulating the MAPK/ERK1/2 signaling pathway for activation of NADPH oxidase in microglial cells. Hon and Mag offer anti-oxidative or anti-inflammatory effects, at least in part, through suppressing IFNγ-induced p-ERK1/2 and its downstream pathway.

Highlights

  • The bark of magnolia has been used in Oriental medicine to treat a variety of remedies, including some neurological disorders

  • Hon and Mag suppressed NMDA-induced superoxide production in neurons Since our earlier study had demonstrated the involvement of NADPH oxidase in the production of superoxide on stimulating neurons with the ionotropic glutamate receptor agonist, NMDA [16], this protocol was used to examine the ability of Hon and Mag to suppress neuronal oxidative events induced by NMDA

  • We tested the effects of Hon and Mag on superoxide production in neurons stimulated with NMDA (100 μM for 30 min)

Read more

Summary

Introduction

The bark of magnolia has been used in Oriental medicine to treat a variety of remedies, including some neurological disorders. Magnolol (Mag) and honokiol (Hon) are isomers of polyphenolic compounds from the bark of Magnolia officinalis, and have been identified as major active components exhibiting anti-oxidative, antiinflammatory, and neuroprotective effects. Magnolol (Mag) and honokiol (Hon) (Figure 1) are polyphenolic compounds from Magnolia officinalis belonging to the neolignan family. Recent evidence that these compounds exert beneficial effects in neurological disorders, such as anxiety, depression, stroke, Alzheimer’s disease, and Parkinson’s disease, has attracted great attention and further investigation of their molecular mechanism and specific targets [10,11,12,13,14,15]. Understanding the underlying mechanism by which Magnolia compounds suppress neuronal excitotoxicity may help explain their ameliorating actions in disease models

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call