Abstract

Our perception of depth is substantially enhanced by the fact that we have binocular vision. This provides us with more precise and accurate estimates of depth and an improved qualitative appreciation of the three-dimensional (3D) shapes and positions of objects. We assessed the link between these quantitative and qualitative aspects of 3D vision. Specifically, we wished to determine whether the realism of apparent depth from binocular cues is associated with the magnitude or precision of perceived depth and the degree of binocular fusion. We presented participants with stereograms containing randomly positioned circles and measured how the magnitude, realism, and precision of depth perception varied with the size of the disparities presented. We found that as the size of the disparity increased, the magnitude of perceived depth increased, while the precision with which observers could make depth discrimination judgments decreased. Beyond an initial increase, depth realism decreased with increasing disparity magnitude. This decrease occurred well below the disparity limit required to ensure comfortable viewing.

Highlights

  • IntroductionBinocular vision provides an important source of depth information that contributes to the performance of many everyday tasks (Bradshaw et al, 2004; Hayhoe, Gillam, Chajka, & Vecellio, 2009; Hibbard & Bradshaw, 2003; Keefe, Hibbard, & Watt, 2011; Loftus, Servos, Goodale, Mendarozqueta, & Mon-Williams, 2004; McIntire, Havig, & Geiselman, 2014; Melmoth & Grant, 2006; Patla, Niechwiej, Racco, & Goodale, 2002; Read, Begum, McDonald, & Trowbridge, 2013; Servos, Goodale, & Jakobson, 1992; Watt & Bradshaw, 2003)

  • We studied the effect of manipulating the disparity content of images on the apparent depth realism, using simple stimuli that allowed us to quantify the effect of binocular cues

  • Depth realism decreased with increasing disparity (slope = −0.0036; t(1,96) = 2.055; p = 0.043)

Read more

Summary

Introduction

Binocular vision provides an important source of depth information that contributes to the performance of many everyday tasks (Bradshaw et al, 2004; Hayhoe, Gillam, Chajka, & Vecellio, 2009; Hibbard & Bradshaw, 2003; Keefe, Hibbard, & Watt, 2011; Loftus, Servos, Goodale, Mendarozqueta, & Mon-Williams, 2004; McIntire, Havig, & Geiselman, 2014; Melmoth & Grant, 2006; Patla, Niechwiej, Racco, & Goodale, 2002; Read, Begum, McDonald, & Trowbridge, 2013; Servos, Goodale, & Jakobson, 1992; Watt & Bradshaw, 2003). Harris, 2004; McKee, 1983; Stevenson, Cormack, & Schor, 1989) and because, unlike many other depth cues, they provide scaled metric depth information. Stereoscopic displays have been shown to be useful in improving visualization and diagnosis in medical imaging, and spatial orientation and performance in minimally invasive surgery (Held & Hui, 2011). In each of these cases, the improvements in performance are consistent with the enhanced information about 3D structure provided by stereoscopic cues

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.