Abstract

The accurate CH/pi interaction energy of the benzene-methane model system was experimentally and theoretically determined. In the experiment, mass analyzed threshold ionization spectroscopy was applied to the benzene-methane cluster in the gas phase, prepared in a supersonic molecular beam. The binding energy in the neutral ground state of the cluster, which is regarded as the CH/pi interaction energy for this model system, was evaluated from the dissociation threshold measurements of the cluster cation. The experimentally determined binding energy (D(0)) was 1.03-1.13 kcal/mol. The interaction energy of the model system was calculated by ab initio molecular orbital methods. The estimated CCSD(T) interaction energy at the basis set limit (D(e)) was -1.43 kcal/mol. The calculated binding energy (D(0)) after the vibrational zero-point energy correction (1.13 kcal/mol) agrees well with the experimental value. The effects of basis set and electron correlation correction procedure on the calculated CH/pi interaction energy were evaluated. Accuracy of the calculated interaction energies by DFT methods using BLYP, B3LYP, PW91 and PBE functionals was also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call