Abstract
In medical genetics, the vast majority of patients with a currently known genetic basis harbor a rare deleterious allele explaining its Mendelian inheritance. Increasingly, for these phenotypes, we recognize exceptions to Mendelian expectations from non-penetrance of clinical disease to significant inter-individual variation in clinical manifestations, likely reflecting the actions of additional modifier genes. Despite recent progress, we still remain ignorant about the molecular basis for many rare disorders presumed to be Mendelian. The molecular evidence increasingly suggests a role for multiple genes in some of these cases, but for how many? In this article, I discuss why equating a phenotype as Mendelian or complex may be short-sighted or even erroneous. As we learn more about the functions of the human genome with its genes in networks, we should view the phenotype of an individual patient as arising from his or her total genomic deleterious burden in a set of functionally inter-related genes affecting that phenotype. This can sometimes arise from deleterious allele(s) at a single gene (Mendelian inheritance) creating a specific biochemical deficiency (or excess) but could just as frequently arise from the cumulative effects of multiple disease alleles (complex inheritance) leading to the same biochemical deficiency (or excess).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.