Abstract

Tire tread separations on light trucks and SUVs have resulted in numerous catastrophic highway accidents over the past two decades in the United States. These accidents frequently involve single-vehicle rollovers or deviations of the impaired vehicle into oncoming traffic, where high speed frontal collisions may ensue. On light trucks and SUVs equipped with a Hotchkiss rear suspension, one explanation for the loss of driver control during an in-process rear tire tread separation is solid axle tramp response to the imbalanced separating tire. This explanation has met with some controversy. The present study will demonstrate that the imbalance forces generated at highway speeds from a partially detreaded tire are sufficient to induce continuous cyclical axle tramp, and can even be sufficient to completely elevate rear-axle tires out of contact with the paved roadway. This imbalance-induced tramping action may be exacerbated during braking and the vehicle’s terminal yaw, when rear traction is crucial to avoiding a catastrophic accident. In addition to test data, several field examples of such events are presented. A key metric of solid axle response to an imbalanced, partially detreaded tire is shock absorber motion. In the present study, shock absorber displacement on the test vehicles, as measured during highway speed tread separation axle tramp events, is found to oscillate through a stroke generally less than one inch (2.5 cm) in length at a frequency in excess of 10 Hz. Peak instantaneous velocities of the shock absorber have been observed as high as 40 in/s (16 cm/s) or more during straight driving under axle tramp conditions. Confirming several previously published findings, the present study shows that increasing shock damping force at the higher operational velocities of the shock absorber reduces the magnitude of axle tramp and assists in keeping the rear axle tires in contact with the ground. Additionally, increasing the distance between the shock absorbers by moving them closer to the wheels provides the same advantage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call